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We consider a Glauber dynamics reversible with respect to the two-dimensional 
Ising model in a finite square of side L with open boundary conditions, in the 
absence of an external field and at large inverse temperature ft. We prove that 
the gap in the spectrum of the generator restricted to the invariant subspace of 
functions which are even under global spin flip is much larger than the true gap. 
As a consequence we are able to show that there exists a new time scale /even, 
much smaller than the global relaxation time tr, l, such that, with large probabil- 
ity, any initial configuration first relaxes to one of the two "phases" in a time 
scale of order t~w . and only after a time scale of the order of tre I does it reach 
the final equilibrium by jumping, via a large deviation, to the opposite phase. 
It also follows that, with large probability, the time spent by the system during 
the first jump from one phase to the opposite one is much shorter than the 
relaxation time. 

KEY W O R D S :  Ising model; Glauber dynamics; relaxation time. 

INTRODUCTION 

We consider a Glauber-type dynamics for the two-dimensional Ising model 
in a finite square AL of side L with open boundary conditions, zero 
external field, and at large inverse temperature ft. 

The equilibrium Gibbs measure/tAL at inverse temperature fl is given 
by 

exp[ --finAL(a) ] 
flAL(ff) = , ZAL = ~ exp[ --filiAL(a) ] 

ZAL a~{ --I,I}AL 
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where HAL(a) = --3-'<.,. ),> ~AL a(x) a(y) and, as usual, Z(.,-.y> ~AL denotes 
the sum of nearest neighbor pairs in A L. 

The associated reversible Glauber-type dynamics is characterized by 
its generator 2"r of the form 

~lLf(a)  = ~ ~ c.,.(a, a)[ f (a" '")-- f (a)]  
x E A L  a = + l  

where a"'" is the configuration a with the spin a(x) replaced by a and the 
jump rates cx(a, a) satisfy the detailed balance condition w.r.t, the Gibbs 
measure PAL 

~AL(a) C,.(a, a) =/~AL(a ''~ C.,.(a x'~ a(X)) 

and a natural symmetry property under global spin flip 

c,.(a, a) = c,.( --a, --a) 

If fl is larger than the critical value tic, the system undergoes a phase 
transition and the infinite-volume dynamics is not ergodic. It is therefore 
interesting to see how this absence of ergodicity in the thermodynamic 
limit affects the ergodic behavior in finite volume, particularly when the 
boundary conditions, e.g., open or periodic, do not break the natural sym- 
metry under global spin flip. 

In the relaxation process of the dynamics generated by ~~ L to its 
equilibrium measure given by PAL there exist at least two physically 
relevant time scales, which we will denote by /tel and t . . . .  . 

The first one, trcj, can be identified with the inverse of the gap in the 
spectrum of the generator .f,~ L and it is the time scale characterizing the 
global relaxation process to the equilibrium Gibbs measure P,~L- The 
second one, t . . . . .  can be identified with the inverse of the gap in the 
spectrum of the generator oWAL restricted to the invariant subspace d/// of 
functions that are even with respect to a global spin flip, and it charac- 
terizes the relaxation process as t --, oo of the probability distribution of the 
Peierls contours generated by the dynamics at time t. 

In ref. 8, our basic reference, the asymptotic to trr as L--* oo was 
analyzed in detail and it was shown that, for any ee (0 ,  I /4],  any fl large 
enough and any L 

exp[flr(fl)L-CflLt/2+*] <.trej <~exp[flr(fl)L + CflL 1/2+~] (0.1) 

for some numerical constant C, where r(fl) is the surface tension in the 
direction of, e.g., the horizontal axis. Recently such a result has been 
extended in ref. 2 to any fl > tic. 
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The reason for such slow global approach to equilibrium is the follow- 
ing. If the dynamics starts from one stable phase, e.g., that in which the 
majority of the spins is + 1, then, in order to relax to equilibrium, it has 
to make a "jump" to the opposite stable phase; in particular, the system, 
during the time evolution, has to go through the "bottleneck" represented 
by the set of configurations of zero (or _ 1 if the cardinality of the square 
is odd) magnetization. Such a set has an equilibrium probability whose 
inverse is of the order of the leading term in (0.1). <1~ The difficult part of 
the proof of (0.1) was to show that the inverse of such an equilibrium prob- 
ability probability actually gives the right asymptotic for the relaxation 
time trel (the lower bound is easily obtained, while the upper bound 
required new ideas and new techniques). Recently is has been shown in 
ref. 7 that a relaxation time exponentially large in L occurs also if the 
boundary conditions are present, but, roughly speaking, they do not 
especially favor any one of the two phases. This is the case, in particular, 
if the boundary conditions are randomly distributed accoding to a 
{1/2, 1/2} Bernoulli measure. 

It is important to notice that if the symmetry of the Gibbs measure 
under global spin flip is broken by homogeneous boundary conditions, e.g., 
+ b.c., and thus one of the two phases becomes unstable, then the relaxa- 
tion time becomes much shorter than it was before and in particular (see 
Theorem 3.1 in ref. 8) it can be bounded from above by exp(C~flL~/'-+~). 
Equilibrium is, in this case, induced by the boundary by means of some 
sort of spin wave with the same sign of the boundary conditions, initially 
attached tothe boundary and shrinking to zero as time goes on. Recently 
in ref. 11 it has been shown that the relaxation time with plus boundary 
conditions has to diverge in the thermodynamic limit at least as some small 
power of L. 

The above discussion suggests that if we look at functions that are 
even under global spin flip, i.e., do not distinguish between the two phases, 
then their average over the dynamics at time t will relax to the equilibrium 
value in a time much shorter than the global relaxation time. This is indeed 
the case and its proof represents the main aim of our paper. More precisely 
we will show the following. 

There exists a positive constant fl0 such that for any Theorem. 
/3/>/3o 

lim I (tret / 
I--- o~ L log > 0 

\ I e v e n  / 

R e m a r k .  Unfortunately, we are not able to prove that t . . . .  is, e.g., 
bounded above by a power of L, as it is natural to conjecture if one 
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neglects the interaction between Peierls contours and assumes a "mean cur- 
vature"-type of motion for each one of them. It would also be interesting 
to know whether the gap of s176 L restricted to the subspace J /  coincides 
with the second nonzero eigenvalue in the spectrum of s176 In this case 
5~ L would fit in the general framework of "metastable Markov semigroup" 
discussed in ref. 3. 

Nevertheless the above result, besides being of independent interest, 
has some nice consequences that make the picture found in ref. 8 more 
precise. The first one (see Theorem 3.1) says that, under the dynamics, any 
initial configuration relaxes to one of the two phases in a time scale tevcn 
much shorter than tr,~. The second one (see Theorem 3.2) says that, once 
the system decides to jump from one phase to the opposite one, then, with 
large probability, it does it on a time scale not larger than t . . . . .  again 
much shorter than the average time one has to wait in order to see the 
jump. One could say that in our case the Glauber dynamics has a behavior 
similar, in some sense, to that of a finite-dimensional reversible Markov 
processes with invariant measure having a symmetric double-well structure 
in the low-noise regime (see, e.g., the fundamental work by Freidlin and 
Ventzelt6~). These applications are discussed for simplicity only for the heat 
bath dynamics (see Section 1), but they could actually be extended to any 
attractive Glauber dynamics. 

The paper is organized as follows. In Section 1 we define the model 
and recall some basic notions from the theory of the Ising model that will 
be useful later on. In Section 2 we prove the main theorem, in Section 3 we 
make precise the conclusions mentioned above, while Section 4 is devoted 
to the proof of several technical lemma needed in Section 2. 

1. THE MODEL 

In this section we define the model and the random dynamics that will 
be the object of study in the next sections. 

1.1. The Ising Model in a Finite Square with Open 
Boundary Conditions 

Let 7/2 be the usual two-dimensional square lattice with sites 
x =  (xt,  x2) equipped with the norm Ixl = Ix , I  + Ix , f .  We will sometimes 
consider 7/2 as a graph with vertices the sites x ~ 7/'- and edges all pairs of 
sites x and y such that I x - y [  = 1. Given V c  7/2, we define the interior and 
exterior boundaries of V as 

Oin, V -  { x E V; 3yr  V; Ix  - -  y l  - -  1} 
Oe. t V -  {xq~ V; 3y~ V; I x - y l  = 1} 
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and the boundary 0 V as 

aV= {(x, y); xeOim V, yeOr V; Ix--y] = 1} 

We also denote by IV] the cardinality of V. Next, for any finite subset V 
of the square A t = { x E 7/2:0 < xi ~< L, i = 1, 2} we define the energy H~v(a) 
in V of a configuration a e g2 v = { - 1, 1 } v with boundary conditions r on 
0 V\O VL as 

H]Aa) = - � 8 9  ~ (a(x) a ( y ) -  1 ) -  ~ (a(x) r ( y ) -  1) (1.1) 
x ,  v E  V I x ,  y ) E c 3 V \ O A L  

[ x 2 3 ,  I = 1 

and the associated Gibbs probability measure at inverse temperature fl 

exp[ - f lH~Aa)]  
p~(a)  = (1.2) 

z(v ,  ~) 

where the partition function Z( V, r) is given by 

Z( V, r) = ~  exp[ --f lH~(a)  ] (1.3) 
r 

If the boundary condition r is the special configuration r(x)= 1 Vxe7/'-, 
then in all our notation the superscript r will be replaced by a simple +.  
We also set, for any function f :  f2 v ~ ~, 

P~v(f) = ~ p]Aa) f(a) 
tY 

Notice that if the set V coincides with AL, then (1.2) describes the usual 
Ising model in A L with open (free) boundary conditions. If the set V is a 
rectangle R (with sides parallel to the coordinate axes), we will sometimes 
denote, whenever confusion may otherwise arise, by p~.~2,~3,~, the Gibbs 
measure on R with the boundary conditions r , ,  r_,, rs, r4 on the external 
boundary of its four sides ordered clockwise starting from the bottom side. 
We use the convention that, if one of the configurations rl is identically 
equal to +1 or - 1 ,  then we replace it by a + or a - sign, while it is 
replaced by the symbol ~ if the ith side lies on the ith side of AL. Thus, 
for example, r , ,  + ,  ~ ,  + means r,  boundary conditions on the bottom 
side, plus boundary conditions on the vertical ones, and open boundary 
conditions on the top one. 

As a next step we recall some monotonicity properties enjoyed by 
the Gibbs measure p~,, which easily follow from the well-known F K G  
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inequalities, tS) which will play a crucial role in the next sections. Given two 
configurations r~, r2 in f2z,., we say that ~ ~< r-, iff 

r l (x)  ~< r-,(x) Vx �9 77-, 

Then, for any pair of finite subsets V~ c V-,cAL, any pair of boundary 
conditions r~, r-, and any function f :  12v, ~ R which is increasing with 
respect to the above partial order, we have 

3, . . . . .  --~k t v , ( f )  It vt(f) <lt p,(f), It r ~< + (1.4) 

1.2. Chains,  �9  and Peierls Contours  

Given a sequence of sites ( ~ - ~ - X I . . . X  n w e  say that cg is a chain if 
Ix;-x;+~l = 1 for any i =  l . . . n - 1 .  A *-chain is defined in a similar way 
but with I x - y l  substituted by 

[x-yl~,  = m a x {  Ix, - y , [ ,  Ix_, -Yz]} 

A chain cg is called a plus chain for the configuration a if a(x) = + 1 Vx �9 <d 
and similarly for a ,-chain. Two disjoint sets A and B are said to be con- 
nected by a plus chain (plus ,-chain) in the configuration a if there exists 
a plus chain (plus ,-chain) cd with x n �9 A and x" �9 B. 

Next, if we denote by 77 2. the dual lattice of 7/2, we call a bond any 
closed segment in R 2 connecting two neighboring sites of 77 2~ and we say 
that two neighboring sites x and y in 77 2 are separated by the bond b if 
their distance (as sites in R-,) from b is equal to 1/2. We also say that a pair 
of orthogonal bonds intersecting in a given site x* of the dual lattice 7/-,* 
are a linkedpair of bonds iff they are both on the same side of the 45 ~ line 
across x*. Given VEAL,  r�9 and a�9 we denote by f~ , (a )  the 
collection of all bonds separating sites x , y � 9  VuOextV, where either 
a(x) ~ a(y) or a(x) ~-r(y). It is easy to see that fC~,(tr) splits up in a unique 
way into a collection of contours Tl(a), F2(a) ..... F , (a) ,  where a contour F 
is a sequence Co, e~, e2 .... e,  of bonds such that: 

(i) e;:~ej for all i and j. 

(ii) For all i =  1 ..... n - 1 the bonds e; and e;+ ~ have a common ver- 
tex in 2v2". 

(iii) If  e;, ei+ ~, ej, ej+~ intersect at a given site x*, then both pairs 
(el, ei+n) and (ej, ej+ 1) are linked pairs of bonds. 

We will denote by 6F the set of sites of 7/2. where an odd number  of bonds 
in F meet and we will say that F is closed if 6F= ~ and open otherwise. 
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Then it is easy to check that any Fef#~v(a) is either closed or 
6F={x*,y*}; moreover, x* is the endpoint of a bond bEF separating 
either two sites x, y e 0~,t V or x e 0~,t V, y e 0r V and the same for y*. The 
length IFI of a contour will simply be the number of bonds in F. Given a 
contour F, we denote by A(F) the set of sites in 2[-' such that either their 
distance (in R'-) from F is 1/2 or their distance from the set of vertices of 
2~ 2. where two nonlinked pair of bonds of F meet is equal to 1/,v/2. 

1.3. A Class of Block-Glauber Dynamics for the Ising Model 

In this subsection we define a class of Markov processes on f2A, which 
are all reversible with respect to the Gibbs masure lzA, with open boundary 
conditions. 

Following ref. 8, each one of these auxiliary Markov processes will be 
indexed by a certain covering of the set AL by blocks (i.e., subsets of At.) 
and at a given updating only the spins inside a particular block will be 
changed. More precisely, let {Ri}/=l ..... be a covering of A t  and let us 
define the generator L {~'1 of the Markov process cr~ R'I indexed by the 
covering { Ri} i= i ..... by 

(L{R'}f)(a)=~, ~ IX*n,(rl)[f(a")--f(a)] (1.5) 
i rl~.OR i 

where a '~ is the configuration in (2AL equal to t/ in R,. and to a in AL\R i. 
As is easy to check, the operator L {R~} is symmetric in the Hilbert space 
L2(OAL, dlXAL) with real nonpositive eigenvalues 

0 = 2 0 ( { R ; } ) > - 2 , ( { R i } ) ~ > - . .  >~ --2k({R,.}); k=21~q--1 

In the sequel we will call gap(L {n~}) the value 21({R~}) and we will refer 
to the Markov process generated by L I Ril as the { Ri}-dynamics. The par- 
ticular generator L IR~I in which the elements R; of the covering are the sites 
x of AL, in the sequel denoted simply by LAL, is known in the literature 
as the heat bath process (HB dynamics in the sequel) and it is an example 
of a Glauber dynamics for the Ising model, that as, a Markov process on 
s with generator of the form 

('~ALf)(a) = ~_~ ~_, cx(a, a)[f(a"'")--f(a)] (1.6) 
x E A L  a~++_l 

where a"'" is obtained from a by substituting the value a(x) with a and the 
jump rates c,.(a, a) satisfy the detailed balance condition 

I~a,(a) C.,.(a, a) =ll aZ(a x'a) Cx(a x'a, if(X)) (1.7) 

822/84/3-4-22 
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the short-range condition 

c , . (a ,  a )  = Cx(~, a) 

for some finite R, and 

if a(y)=g(y) 

MarceUi and Martinelli 

V Ix-y]  <~R (1.8) 

Remark.  
contours ffnL(a) of the configuration a and not on the sign of the spins. 
Thus we can conclude from the theorem that the probability distribution 

lim I (/gap . . . .  (S~ t ~ l o g \  gap(SaAL) j>O 

We observe that functions in Jr  depend only on the Peierls 

0 < k ~< min c,.(a, a) ~<max c.,.(a, a) <~ 1/k (1.9) 
x , a , ~  x , a , a  

for a suitable constant k independent of L, the side of our square. 

2. P R O O F  OF THE M A I N  R E S U L T  

Let AL be the square AL=  {xeZ2: O < x i < ~ Z  , i= I, 2} and let .L-aAL be 
of the form (1.6). We assume that the jump rates c,.(a, a) satisfy (1.7)-(1.9) 
for ltAL and the following additional symmetry condition: 

cx(a, a) = c,.( - a ,  - a )  (2.1) 

If J///is defined as 

J [ -  {f: O,,L ~ N; f ( a ) = f ( - - a )  VaeOAL } 

then, because of (2.1), J ' / i s  left invariant by ~aL. Thus we can consider the 
eigenvalues of --~AL[,// and in particular the first positive eigenvalue, 
which we denote by gap .. . .  (~AL)' By the min-max principle, gap . . . .  (L~'aL) 
is given by 

gap . . . .  (,L-eAL) = inf # ( f '  f )  
f~.# Var(f )  (2.2) 

where do(f,f) denotes the Dirichlet form associated to ~,~,: 

o~(f,f)  = �89 2 PAL(a) C,:(a, a)[f(a ''~) - -  f ( o ' )  ] 2 (2.3) 
x . a  

and Var(f )  denotes the variance o f f  with respect to PAL" 

Theorem 2.1. There exists a positive constant v o such that for any 
fl >~ fl o 
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of ffx,(a,) converges to the equilibrium measure over the contours in a time 
of the order of gap . . . .  (s176 - ' ,  which is much shorter than the relaxation 
time g a p ( ~ a , ) -  ] of the probability distribution of a,. 

Proof of Thoorom 2. 7. First we observe that, because of (1.9), the 
Dirichlet form of ~A, can be estimated, apart from a constant factor, from 
above and from below by the Dirichlet form of LAL, the "heat bath" 
generator. Therefore it is enough to prove the result only for LAL. Next we 
observe that 

1 
) lim r(fl) = 2 (2.4) im  lim -~-~ log(gap(L&))=#~o~ 

where r(fl) is the surface tension in the horizontal direction. In (2.4) we 
used Theorem 4.1 of ref. 8 to derive the first main equality and standard 
results on the surface tension r(fl) (see, e.g., ref. 4) to compute the limit 
fl ~ oo. It is therefore enough to show that there exists a positive constant 
c~ < 1 such that, for all sufficiently large fl, we have 

1 
J i m  --%-7 log(gap . . . .  (LAL)) <~ 2(1 --6) (2.5) 
L ~ o ~  p~ 

In order to prove th above basic result we follow the strategy employed in 
ref. 8 to prove the first limit in (2.4). 

Given 0 < fi < 1/20 let us consider the covering of At  whose elements 
are the following six rectangles: 

R i = { x  E AL:  (i-- 1 )(L] + 6L)/2 < x2 <<. (i + 1 )(L] + 6L)/2 - 6L}, i = 1, 2, 3 

Rj= {x~AL: (j--4)(L2+6L)/2 <x,  <-..(j-2)(L2 +6L)/2--6L},  j = 4 ,  5, 6 

where L1 = L( 1 -- 6)/2 and L2 = (L( 1 - 86)/2. 
In the sequel we will denote by gIR, l ( f , f )  the Dirichlet form 

associated with the associated generator L(R'I: 

r l(f, f) = �89 ~ ~ pAL(a)p~,(q)[f(a")- f ( a ) ]  2 
i o ' ,q 

where, according to Section 1, P~i denotes the Gibbs measure in R~ with 
boundary condition a along O~xtR~kOe,aA L. It is quite easy to check (see, 
e.g., Proposition A 1.1 in ref. 1) that for any f we have 

o~(f, f )  >/�88 inf gap(L~: ) r (f, f )  (2.6) 
J , r  
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Thus, since the subspace Jg is obviously invariant also under L IR'I, we 
have 

gapeve.(LA,)/> �88 inf gap(L~ :) gap . . . .  (L IR'I ) (2.7) 
J , r  

Finally, thanks to Corollary 2.1 of ref. 8, we have 

1 e-4# 
�9 e-2PlLcl-~1+-~) (2.8) linf gap(L~J)/> inf2 ]Rj[ e -4#  --be +4# 

If we now combine (2.7) and (2.8), we conclude that (2.5) wil follow once 
we prove the following result: 

Proposit ion 2.1. There exists ~o~<1/20 such that for any ~<~o  
there exists flo(6) such that for any fl~>fl0 there exists another positive 
constant k(fl, ~) such that 

gap . . . .  (LIR'})~k(fl, ~) VL 

Proof of Proposition 2. 1. The proposition follows immediately if we 
can show that, in the above range of parameters, there exists a number 
0~(fl, ~)e  (0, l) such that for any large enough L the restriction to the sub- 
space J / o f  the semigroup generated by L IR~I at time t = 1 is a contraction 
in the sup norm, with norm less than 1 -cr In more probabilistic terms, if 

sup [Eof(a~R=q)[ <(1 --~)[f[o~ V f e J /  (2.9) 
o" 

where E~f(a} R'I) denotes the average over the process at time t starting 
from a. Let now { ti} i=l . . ,  be the random times at which the initial con- 
figuration a is updated. Then (2.9) follows if we show that there exists a 
number e(fl, ~) e (0, 1 ) such that 

sup IE~f(a~'l)l ~<(1 - e ) I f l o ~  VfeJr  (2.10) 
o" 

We will now concentrate on the proof of (2.10). Notice that, because of the 
definition of the block dynamics, the following "multiple integral" formula 
holds for E,,f(aJ~ '1 ): 

I 
E.f(a~:'})= ~ ~ f dp~,,(a,) f d/a"R,2(a2) 

it . . . i s  E { 1. _ 6 }  

(2.11) 
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where the factor 1/65 stands for the probability that during the first five 
updatings the rectangles Ri,...Ri s are chosen in the given order. Therefore, 
in order to prove (2.10), it is sufficient to show that for any initial con- 
figuration a there exists a special sequence (in the sequel called a good 
sequence) il(a)...is(a ) and a number g(fl, 6)e  (0, 1) such that 

~<(1-g)  I f l~  

'dl-t~]4(~4) f dfl~s(ff5) f(ffs) [ 
(2.12) 

In order to define the set of good sequences we first need the following key 
result. Given a rectangle R with horizontal side L and vertical ones 
�89 0 < 6 <  1/20, 

R =  {x;0 <x~ ~<L, 0 <x2~<�89 

let us denote by M~ the vertical strip {x e R: �89 - 4 6 ) ~ x ,  ~ �89 + 46)} 
and let 0;, i =  1,..., 4, be that part of Oi,tR adjacent to the ith side ordered 
clockwise starting from the bottom one. Given a vertical open contour F 
in R, namely an open contour whose first and last bonds separate two sites 
in the top and bottom parts of OR, respectively, we will say that F is of 
type ( + ,  - )  if the spins on the left part of A(F) are plus and the spins on 
the right part of A(F) are minus, and similarly for ( - ,  + ) type. Let us then 
consider the following four events: 

S + - { or; 3 a plus .-chain cff c { x e R: dist (x, 03) ~< 36L } 

connecting 02 with 04} 

S - - { ~r; 3 a minus .-chain cg c { x e R: dist(x, 03) ~< 36L} 

connecting 02 with 04} 

C t +. - I - { cr; 3 an open ( + ,  - ) vertical contour F 

with A(F) c M~; 3 a plus .-chain 

off, c {xeR:  dist(x, 03) ,,< 36L} 

connecting 02 with A(F); 3 a minus 

*-chain cg 2 c {x e R: dist(x, 03) ~ 36L} 

connecting 04 with A(F)} 
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C ( -" + ) - { o'; 3 an open ( - ,  + ) vertical contour F 

with A(F) c M6; 3 a minus ,-chain 

~gl c {x ~ R: dist(x, 03) ~ 36L} 

connecting 02 with A(F); 3 a plus 

*-chain cg_, c {x e R: dist(x, 03) ~< 3&L} 

connecting 04 with A(F)} (2.13) 

Warning. In the sequel, for notational convenience, we will denote 
with the same symbol e(L) any error term in our estimates which is 
exponentially small in the side L of our square. In particular, when adding 
two (or a finite number independent of L) error terms coming from two 
different estimates we will write 2e(L) and so forth. Then we have: 

L e m m a  2.1. There exists &o~< 1/20 such that for any 6~<~o there 
exist flo(6), k ( 6 ) > 0 ,  and Lo such that for any fl>>-flo and any L>~Lo 

sup p ~ ' ~ ' = ' ~  + w S -  w C ( +' - I w  C I-" +))c) <~e(L) 

The proof, based on the Peierls argument, it postponed to Section 4. 

R e m a r k .  Clearly an analogous result holds if the boundary condi- 
tion a is on the bottom side 01 and, in the definition of the events S +, S - ,  
C (+'-) ,  C (- '+),  the third side 03 is substituted with 01. For  simplicity, 
however, we will keep the same notation S +, S - ,  C +'-) ,  C (- '+) for the 
modified events whenever confusion does not arise. 

Using the above result, we can conclude that for any a 

a + a - -  o- ( + ,  o" C ( - , +  ), pR,(C max{pR,(S ),PR,( S -)),PR,( I)}/> 1/5 

and similarly for R3 

a + a -- q 

max{/~R3(S ),pR3(S ) ,pro(C(+ ' - ) ) ,  p~3(C(-'+))}>~1/5 

We are now in a position to define the set of good sequences i~...i 5 for a 
given starting configuration a. 

Defini t ion.  We say that the sequence i ) . . . i  5, i:~ { I ...6} is good if: 

(a) i, = 1, i2 = 2, i3 = 3, and i 4 i 5 arbitrary if 

ItR,(S~ + ) > 1/5 or p,~,(S-) > 1/5 
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(b)  i~ = 3, i2 = 2, i 3 = 1, and  i4, is a r b i t r a r y  if c o n d i t i o n  (a)  a b o v e  is 
v io la ted  a n d  

O" - b  O" - -  # R , ( S  ) > 1/5 o r  /zR~(S ) > 1/5 

(c) il = 1, i 2 = 3, i 3 = 4 ,  i4 = 5, i5 = 6 if cond i t i ons  (a)  and  (b)  a b o v e  
are v io l a t ed  and  

p~,(C (+'-)) > 1/5 

or  

and 

or 

a n d  ,,~ tc'~+,-))> 1/5 
~" R3 ~ 

p ~ , ( C  ( - '  +)) > 1/5 a n d  I.t~3(C ~-'+)) > 1/5 

(d) i I = I, i2 = 3, i 3 = 2, i 4 = 1, i s = 3 if c o n d i t i o n s  ( a ) - ( c )  a re  v io l a t ed  

p~,(C (+'->) > 1/5 a n d  pm(C (-'+)) > 1/5 

p ~ , ( C ( - "  +)) > 1/5 and  +," ~m~'C(+'-)) > 1/5 

G i v e n  n o w  o- a n d  a g o o d  sequence  i~... i 5, let us e s t ima te  the  l e f t -hand  
side o f  (2.12). 

W e  h a v e  to  d i s t inguish  a m o n g  the  different  possibi l i t ies  ( a ) - ( d ) .  

2.1. Case (a) 

W i t h o u t  loss o f  genera l i ty  we can  a s s u m e  tha t  ~ + )>~/5 pn~(S . T h e n  we 
wri te  

fd! n,(a)) d #'_ ~" 

= I ,r a, d, tlal~3(ff3) g(a3) 

where  we have  set 

(2.14) 

g(o'3> = f dPR3~4(a4> f d/-t,~.5(a5 ) f ( a s >  

Not i ce  tha t ,  by  cons t ruc t i on ,  g ~  ,/g a n d  [glo~ ~< If l~.  I f  in (2.14) we wri te  

1 ~ ~S+(0"l)  ~ X(S + )c(0"l ) 
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we get that the r.h.s, of (2.14) is smaller than or equal to 

+ . o  ,S + f d, uR:(0.2)~ f a~-3(a3)=' g(a3) I 

it a,(( )") dlt]',(0., ) d/t a~(a3) g(a3) (2.15) 

The second term m (2.15) is trivially estimated by 

/~,~,((S+) ") Igl ~ + ' ~, ~<FtR,((S ) ) Ifl ~ (2.16) 

In order to estimate the first term, we need the following technically easy 
lemma. 

I . e m m a  2.2. In the same range of parameters as for Proposition 2.1 
and for any function F depending only on the spins in R~\R 2 we have 

f dlt"R,(a , IS  + ) F(o,)- f a ~ ; , ( r  I ~<e(L)[F[.~. 

The proof is postponed to Section 4. 
Thus we have that the fist term in the r.h.s, of (2.15) is estimated by 

/tR,(oll )lt~,(S +) dllR,(a2) d~td3(0.3) 

~' ta,(S ) f dlt;,(0.,)f dltR,. (0.2)/ ;ud3(a3) g(0.3) +e(L)  [ f l~  (2.17) 

Notice that in the 1.h.s. of (2.17) the configuration 0.j in the first sum most 
coincide with the initial configuration a in AI_NR~. Thus the boundary con- 
ditions for the second rectangle R2 are 0.~ below and 0. above. This fact 
justifies our notation lz~, "" in the r.h.s, of (2.17). As before, we write in the 
sum over 0" 2 

where 

~ + =  

1 =Zr + Z~r 

0.; 3 a plus ,-chain cg c {x 

connecting O 2 with 04} 

L } 
R2'  dist(x, 03) ~< ~ ( 1 - c~) 
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We thus get 

It~,(S +) f dp+,(a,) f dp~'2""(a2) f d',, . . . .  n-3to'3} g(a3) 

~<p.~,(S+) ] f dp~-,(o,) dlt~'.'"(a21g + ) I.tR,~"~-+(S ) fd't, . . . .  n-.da3) g(a3) 

: + ( + f d / l ~ ' : : ( a 2 1  - + "  ~ " "  - +  +I R,( S ) jdpR,(al ( s ) )~R ,  ((S)'3 

fd .... I Xj ,uR-~tO" 3 g(o'3) (2.18) 

The second term in the r.h.s, of (2.18) is easily seen to be bounded from 
above (see, e.g., Proposition 4.1 of ref. 8 for a similar statement) by 

.t ~ r S +  + Ifl~z R,t ) f dltR,(al)ltT;~((S+) '') 

~ < l f l . : ,  " + [f dP+,'+(a, ~"_~" -+ ] pR,(S ) )lZR, ((S )")+~(L) (2.19) 

where 

L +6)} /~l = {x ~ R~: dist(x, 03) ~< ~ ( 1 

and e(L) goes to zero exponentially fast in L. 
Using the monotonicity properties discussed in Section 1 and the 

DLR equations, we find that the r.h.s, of (2.19) is in turn bounded from 
above by 

""'s+'[f ++ ,:"-.g+)")+e(L)] Ifl~ffR,t J d/~R,'uR,.(a~)~-~, ,, 

~< Ifl~/z~,(S + ) If  d/z ~'SR.~(a, )~',"-((g+)c) + e(L)] 

L f [  o o  t r  + + ,  - -  - - +  c = /zm(S )[/tR, uR_,((S ) ) + e ( L ) ]  (2.20) 
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Let us now examine the first term in the r.h.s, of (2.18). We write 

+I~,(S ) dlL~,(~,) d~: (~_,1 - +  " " "  - +  - . ~ , + " ( S - + ) )  

x f d~-.,(o3) g(cr3)r (2.21) 

The second term in the r.h.s, of (2.21) can be estimated from above by 

lo" + +,o" --+ +,or  --+ --/l~,,.,R:(S ) <~[f[.~lR,(S )[(#R., ( S )  +e(L) ]  (2.22) 

by the same argument that was used to derive (2.20). Notice that the 
difference in height between the two rectangles R 2 and K~ ~o R, is aL. This 
observation leads to the following lemma. 

L e m m a  2.3. There exists 60 ~< 1/20 such that for any 6 ~< 6o there 
exist flo(6), k(6o)> 0, and L o such that for any fl ~>flo and any L ~> L o 

-< t+'~ 'S + +'" -+)<~k(6o)6 (2.23) 

lt~,~R,_(S +) >>- 1/5 Vcr (2.24) 

The proof of the lemma is postponed to Section 4. 

In conclusion, the r.h.s, of (2.18) is bounded from above by 

~4,(s + ) +,o-+ 

+ if[ o + +. -  -+ ,. ~:./tR,(S )[/za,,oR,.((S ) )+k(6o)6+ 2e(L)] (2.25) 

for any 6 ~< 6o, any fl ~>flo, and any L ~> Lo. Our goal at this point is to 
show that the first of the two dominant terms in (2.25) is exponentially 
small in L thanks to the fact that g (a )eJ r  and flAL(g)=0. The first result 
that we need is the following. 
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L e m m a  2.4. There exists 60 ~ 1/20 such that for any 6 ~<6o there 
exist flo(6), k(6o)>0,  and L o such that for any fl>~flo and any L>~Lo 

dlt~.(el) d/tR." (o'. I ~t R](cr3)g((r3) 

- dPR:" (~e) dP~i3(3) g(~3) <~ Ifl ~ e(L) 

with e(L) exponentially small in L. 

The proof of the lemma is postponed to Section 4. 
Using the lemma, we get that 

lt~,(S + ) It+,'~(" + ) [; dlt~, (r I dp~','~(cy2 ,'+);dlt~'-3(cy3)g(o" 3) 

~</z~t(S+)/2.2 ( S )  d/~,(ert) dpR 2 ((r2) dpg3((r3)g(a3) 

a + I + ,a --+ +#R,( S )/R,_ (S ) [f l~e(L) 

, )/lR2 (S ) uR,(a2) 

o" + + , a  - - +  +2/tR,(S )PR,. (S )J'i~e(L) (2.26) 

where we used Lemma 4.1 of Section 4 to replace the measure p,~, with the 
measure p R + . R_,, and the DLR equations. 

We now observe that F(a2)= I d/~:3(a3)g(g3) is a zero-average even 
thnction of G2 depending only on the spins ~2(x) for x ~ AL\R3; moreover, 
IF[ ~ ~< [fl ~. For such kinds of functions we can safely replace in (2.26) the 

+ measure PR~R., with the measure pA,(~r]m > 0), where, for an arbitrary 
configuration a, m(a)= [Z.,-~AL a(X)]/[ALI denotes the normalized magne- 
tization. More precisely, the following holds. 

Lemma 2.5. There exists 6o ~< 1/20 such that for any 6 ~< 6o there 
exists f10(6), k(60)> 0, and Lo such that for any fl ~> flo and any L >/L0 

~ R'3t~3~ g(cr3) 

--fd/,A~(a2[m>O) f+~A~(a3)g(a3) <~[f[~e(L) (2.27) 

with e(L) exponentially small in L. 
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The proof of the lemma is postponed to Section 4. 
Finally, we notice that for any even function F(a) 

pA,(F) = f d#,,L(a l m >0)  F(a) (2.28) 

so that 

f dlt,,L(a2 [ > O) f d,'t . . . .  --- ~t ~3(0"3) g(o-3) m , f d ~  

= f dpm.(~r)f(a) = 0 (2.29) 

where we used the DLR equations, the definition ofg(a) ,  and the fact that 
f has zero mean. In conclusion, by putting together (2.26)-(2.29), we get 
that the first main term in (2.25) satisfies 

' + ~  ; f I ['t~R,(S+)/ R,_ (S ) dll~,(al) dltR," (,~, I• +) ~ R-3(o-3)g(0-3) 

~< 3e(Z) Ifl (2.30) 

This allows us to conclude that the r.h.s, of (2.14), our starting point, is 
bounded from above by 

Ifl {#,~,((s+) ") t ~ + + ' -  -+ " 6e(L)} + IR , (S  )[/-tR,,~R,_((S ) ) + k ( g o ) 8 ] +  

~< 1/1 ~ { 1 - ~ + k(~o)~ + 6e(L)} (2.31) 

where we used the starting hypothesis, p~,(S +) >i 1/5, and the bound 

+ - -  - - q -  

#R, ~R_,((S )'3 ~<4/5 

which follows immediately from Lemma 2.3. Thus (2.12) follows for ~ and 
L small and large enough, respectively, and the proof is complete. II 

2.2. Case (b) 

This case is related to case (a) by a 180 ~ rotation. Thus the same proof 
applies, but starting from the top rectangle R3 and ending in the bottom 
one R~. 
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2.3. Case (c)  

We have to bound the quantity 

Without loss of generality we can suppose that 

~+" i ~" C ~+'-~) 1/5 pRI(C - ) ) >  1/5 and t R3( > 

As in case (a), we write 

1 =Xc,+.-~(al) +Xw~+,-,:(al) 

1 =Xc,+.-,(a2) q-Xic,+.-i),.(a2) 

in the first and second integrals, respectively, and we bound (2.32) from 
above by 

itS,( 
I 

+lfl~p~,(C~+.-~)(l_p~3(C~+.-~))+lfl~( 1 ~ ~+.- - p R , ( C  ~)) (2.33) 

We will now analyze the term 

]I dp~,(a, [ C '+'-') I dP~3(a2 [ C '+ ' - ) ) " ' "  I d~/~46(~ [ (2.34) 

Let SL, + be the analog of the event S § for the "vertical" rectangle R4: 

S, + = {a; 3 a plus *-chain cg c {x ~ R 4' dist(x, 04) ~< 3ilL} 

connecting 0, with 03} 

Then we write in (2.34) 

1 =Xs,t(a3) +X(s,+:(a3) 

and get that thd r.h.s, of (2.34) is bounded from above by 

- + f - ~3 f (a5)  p/~m(S,,  ) dpm(a3 I S : )  I dPR'(a4) f dtt~4(a5) su 

+ I  dnR,(a, I ~ c ~ + - ' )  fd~3(az I c~ +'-')/~%((s.+) ") If] ~ (2.35) 
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Notice that the first term in (2.35) is identical, after counterclockwise rota- 
tion of 90 ~ , to the first term in (2.15). Thus we can repeat the reasoning 
that led us from (2.15) to (2.31) and get 

~, S + + ,, a3 "4 f ( a s )  suppm( m(S, ) f d P m ( a 3 [ S ~ + ) ; d P m ( c r 4 ) ~ d P . 6 ( ~ , )  

~< sup ktL(S, + )(~ + k(bo)b + 6e(L)) (2.36) 

The second term in (2.35) is estimated by the next lemma. 

k e m m a  2.6. There exists bo~< 1/20 such that for any 6~<~o there 
exists flo(6), k(~o)> 0, and Lo such that for any fl >/flo and any L/> L o 

f d/t%,(a, I C '  + ' - ' )  f d/taR3(~72 I C ̀ +'-' '  , : : " s  + [ j ~ m , ,  ~, )") <~e(L) 

The proof of the lemma is postponed to Section 4. 
In conclusion, the r.h.s, of (2.33) is bounded from above by 

Ifl ~ [p,~,(c ~ +' - ) / t~ . , (C  ~ + -~)(~- + k(bo)b + 7e(L)) 

+ 1  ~ ~+'-~) --/LR,(C /~ , (C~+' -~) ]  

~< If[ ~[  1 -- ~ + k(bo)~ + 7e(L)] (2.37) 

and (2.12) follows also in this case. II 

2.4. Case (d) 

We have to bound the quantity 

Without loss of generality we can suppose that 

o" { + ,  o" p R , ( C  - ) ) >  1/5 and pR3(C(- '+))> 1/5 

and we first bound (2.38) from above by 

~, i~, C(-,+)) f ~ U+,-)) PR, ( C ~ + ' - ) ) /  m( dPR,(Crl [ 

X a. - - .+ )  ~ ~, fd, UR,(t72[C t ) f p R-2(o'3) g(o'3) 

" ~ ' C +' - ~) / I~ (  Cr  + ~) ) I f l ~  +(1  -/~R,t (2.39) 
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where 

gto.,) = f f t2.4o) 

Let us now define the events in R2: 

S + + = {a; 3 two plus ~--chains cg t , 

connecting 02 with 04 and such that 

(r xeR,:  T~(1-6)~dist(x,  03)..~-~(1-6) ; 

% c  xeR2" (1-~)<<.dist(x, O l ) ~ ( l - 6 )  
(2.41) 

S -  - = t~; 3 two minus *-chains ~gl, (go_, 

connecting 02 with 04 and such that 

L 6)}; % c  {x~R2:L(1-3)<~dist(x,  O3)<~(1 - 

~g2c xeR2: (1-6)<~dist(x, 01)<<.~(1-c~) 

Then we have the following basic lemma. 

k e m m a  2.7. There exists c~ o~  1/20 such that for any 8 ~ o  there 
exists flo(6), k(6o)> 0, and Lo such that for any fl ~>flo and any L i> Lo 

f ~ a  f . + dPR,( i I CI+'-)) d12~3(a2 [ C'-'+')P~2~(( S+ uS - - ) " )  <~e(L) 

The proof of the lemma is postponed to Section 4. 
Using the lemma, we can assume, without loss of generality, that 

d ~ C I+'-~) ~ CI-'+~)Id~.(S + f ;u.,(a, I f dp.3(~_ I _ +)>/1/3 (2.42) 
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and we can bound from above the integral in the first term in the r.h.s, of 
(2.39) by 

fdll~,(a, I C '+ ' -~)  fdzeR~(~,_lC ~-'+~ . . . .  ++)  ,, ,, , /x R-2t ~ 

x sup f dlt~_(, I [ S + + ) gOl ) 
o- d 

f d c ,§  -,) f ~ c , -  § ~ 2 4 7 2 4 7  "t- d ~/'/RI(O'I I d/tR_~(a,_ I mR-_,,, , ,  I f l ~  3 
(2.43) 

Notice that in the first term of (2.43) the function g(r/) depends only on the 
spins r/(x), x e R2 \ (R~  w R3). Therefore, as in the discussion of case (a) (see 
Lemmas 2.2 and 2.6), we can safely replace the measure p~,.(t 1 I S § § ) with 
the measure pAL(r/ I m > 0). More precisely, 

sup I dP~'-('l I S + + ) g( ' l )  <~ f dPAL(,1 I m > 0) g(r/)  + e (L)  I f l  .:... (2.44) 

Since the function gOl) is even with zero mean, the first term in the r.h.s. 
of (2.44) is zero. In conclusion, if we combine (2.41)-(2.44), we have 
bounded (2.39) from above by 

/~,( Cr +'- /:R~( C~-" + )) 

dPR3( 2 [ PR,_( Y) Ifl 

la2 { +, . )) +(1-/R,(C - ' ) l ~ , ( C  ~-'+ +e(L))lfl~ (2.45) 

By assumption we have 

~' ~+'-~) ~ C I - ' + l )  1/5 / tR , (C > 1/5; PR3( > 

f dlz~,(cr, C~+'-') f d/~,(cr, I C'-'+')/~g(S++)>~ 1/3 

which implies that the r.h.s, of (2.45) is smaller than or equal to 

[ 1 - 7 ~ + e ( L ) ]  I f [~  (2.46) 
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3. A P P L I C A T I O N S  

3.1. Pathwise Relaxation to One of the Two Phases 

In this section we derive some consequences of Theorem 2.1 for the 
heat bath dynamics that, we hope, make more precise the picture found in 
ref. 8. 

To begin with, we describe a global coupling for the dynamics starting 
from arbitrary initial configurations, which will be important for the for- 
mulation of our result. Our construction works as follows: 

(i) With rate ]ALl we choose a site x e A L  and a random number 
~.,. ~ [0, 1 ] with a uniform distribution. 

(ii) Given an arbitrary configuration ~7, the value pT(x) of the spin at 
x is replaced by + 1 if 

~.,-~</IA,(~(X) = + 1 I J l (y ) , yv~x)  (3.1) 

and by - 1  if the opposite inequality holds. 

The above algorithm is of course nothing more than an explicit way to 
realize on a common probability space the HB dynamics in AL starting 
from different initial conditions. In the sequel we will denote by a '~'''~." the 
output of (i) and (ii) and by a7 (a.'.~.,) the configuration obtained from r /by 
iteratively repeating the above steps up to time t (between time s and 
time t). We will also denote by N, the number of updatings that occurred 
up to time t. Clearly N, is a Poisson random variable with mean tL  2. If q 
is one of the two special configurations identically equal to + 1 or - 1, then 
it will be replaced by a + or a - sign. 

Two properties of the coupling will be relevant for us. The first one is 
known as monotonicity in the initial configuration: 

a~<~a~ if r/~<r (3.2) 

while the second expresses the symmetry of the problem under global spin 
flip: 

a'~'"-'r = -a - '~ ' " l - r  if ~.,.7~/IAL(a(X)= +1 Ill(y), y:/=x) (3.3) 

We are in a position to formulate our first result. Let 

l OflL 2 
To= (3.4) 

gap . . . .  (LAL) 

Then we have the following result. 

822/84/34-23 
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Theorem 3.1. There exist positive constants flo, Lo such that for 
any fl/> flo and any L >/Lo 

supF(cr,+ ~a~,#ai-)<~e -E'/r~ Vt>~To 
q 

Corollary 3.1. Under the same hypotheses as for the theorem 

sup f dlx,tL(r) P(a~, # a T # a t ~ ) < ~ e  -t'/r~ Vt>~ T o 

Proof o f  Corollary 3. 7. By monotonicity, the probability appearing 
in the statement is obviously smaller than the corresponding probability 
appearing in the statement of the theorem, l 

R e m a r k .  Notice that, thanks to Theorem 2.1, 

, 
/  zlog >0 

\To/ 

if tre I -gap(LAL )-1. Thus the corollary says that any initial configuration 
relaxes to the dynamics started from one of the two phases in a time much 
shorter than the global relaxation time t~el. 

C o r o l l a r y  3.2. Under the same hypotheses as for the theorem let 
T] = L T  o. Then 

sup I P(a~-, = a~-,) + P(a~, -- a"r,) -- 11 ~< e(L) 

where e(L) is exponentially small in L. 

Proof of  Corollary 3.2. Using Theorem 3.1, we have that 

sup IP(a~, = a~-,) + P(a~, = a'~-,) - II ~< e-L + P(a~-, =a~ , )  (3.5) 

Clearly the event a~-, = a r~ implies that 

rn(a~.,)<~O or m(arl)>>.O 

Thus the second term in the r.h.s, of (3.5) is bounded from above by 
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because of monotonicity in the initial configuration, of the definition of T,, 
of Theorem 2.1 and of estimate (4.5) of ref. 8. 

Proof of Theorem 3.1. Let us set 

p(t) = sup P(a  + # a~ # a,- ) (3.6) 
q 

Then, by monotonicity in the initial configuration and the Markov 
property, p(t) satisfies the inequality 

Thus in particular 

p( t + s) <~ p( t) p(s) (3.7) 

p( t ) ~ p(To) [ '/Td 

It remains to prove that p ( T o ) ~ e  -l .  
because of (3.2), 

(3.8) 

For this purpose we observe that, 

a~-0 <~ a ~-o/,,ro and are ~> aT0/,_, re 

which implies that p(To) can be bounded from above by 

p(To) ~ s u p  P(a;o/2.ro# a'To :~ a r0/_,, T0) 
q 

(3.9) 

- ( 3 . 1 1 )  f ( q ) = P( a fo/z ~ are~2 ~ are~2) 

Notice that, because of (3.3), f ~  J / .  Therefore we can bound from above 
the r.h.s, of (3.10) by 

J dlt,~L(r/) [E,,( f ( a'~-o/2) ) -- lt AL(f)]2"~ 1/2 + l, t A , ( f  ) 
min, IrA,Of) J 

_<(vaT(f) '~'/'- 7"0 
-,~\min,,/~aL(r/) j e x p [ - - ~ - g a p  .. . .  (LA,)] +/aaL(f) (3.12) 

Both terms in the r.h.s, of (3.12} tend to zero as L-+ 0% the first one 
because of our choice of To and the second one because of Proposition 5.2 
of ref. 8. | 

where 

= sup E,,(f(a'~o/2) (3.10) 
tl 
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3.2. Tunnel ing Between  the T w o  Phases: Last Excursion 

We will analyze in some detail the last excursion from one phase to 
the opposite one. In particular we will show that, once the system decides 
to make the transition, then it does it in a time much shorter than the 
average time one has o wait in order to see the transition. As discussed in 
the introduction, such a phenomenon is very common in stochastic 
dynamics problems with several stable equilibrium points in the small-noise 
limit. 

In order to formulate the problem, let us define recursively, for a fixed 
small 6, the following sequence of stopping times: 

so--O 

t i =-- inf{ t > Si__ 1 ; [ [m(aT)l --m*[/> 2~} 

si = inf{ t > ti; I Im(~rT)l - m*[ < ~} 

(3.13) 

where m* is the spontaneous magnetization. We also define the random 
variable vOl) as 

v(q) - m i n { i ;  [m(a:~)+m*[ <0} (3.14) 

Then we have the following result. 

Theorem 3.2. There exist positive constants flo Lo such that for 
any fl/> flo and any L t> Lo 

sup P(s,,t,l~ - -  t,,t,l~ >~ T I ) <~ e(  L ) 
i/ 

where T~ = L T  o is as Corollary 3.2 and e(L) goes to zero exponentially fast 
in L. 

Remark. If r/ is such that m ( q ) > m * - 2 ~ 5 ,  then, using (3.13) and 
(3.14), we may call s,~,~- t,,~,l~ and s,,~,~ the time scale of the last excursion 
before leaving the set {a; m(a) >/ - m *  - 6 }  and the tunneling time for ~/, 
respectively. It follows from Theorem 5.1 of ref. 8 that, if r/ is identically 
equal to +1,  the average of the tunneling time is of the order of 
gap(LAL)- 1 and the same if r/is distributed according to the Gibbs measure 
restricted to the phase of positive magnetization. Thus in this case, using 
the definition of To together with Theorem 2.1, we may conclude that the 
last excursion occurs on a time scale much shorter than the average tunnel- 
ing time. 
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Proof  o f  Theorem 3.2. For any integer n we may estimate from 
above sup, 1 OZ(svl,i - tv(,~} >/Tl) by 

n su p P( l lm(aT) l -m* l>~ fV t<<. T l )+s upOZ(v ( r l )>n)  (3.15) 
q q 

Using the fact that the absolute value of the magnetization is an even func- 
tion, we can write as in (3.12) 

P(I Im(~-o)l - m*l/> 6) 

\ m i n ,  ( Var(f)p.~,(rl)jx'/2 exp [_ ~-T~ . . . .  (LAL)] ~<#AL([ Ira(q)[ -- m*( >~ fi) + / -- 

(3.16) 

where f = z ( I  Im(~/)l-m*l >/6). Thus, using the definition of T o, we have 

lim sup P(I Im(a'~-0)l-m*[/>6) = lim PAL(I Im(q)l-m*l ~>6)=0 (3.17) 
L ~ o ' ~  r/ L ~ c c  

Then, using the Markov property, we get that 

supP(llm(~l,)l+m*l>~6Vt<~Tl)<~e-C[r~/r~ -rz  (3.18) 
q 

with c arbitrarily large for L large enough. 
Next we observe that, using the monotonicity in the initial configura- 

tion and Theorem 5.1 of ref. 8, 

sup R(s , s ) )  <. E(sv(+)) <~ e {#r(p) + y~L (3.19) 
t/ 

where r(fl) is the surface tension in the horizontal direction and 7 > 0 can 
be taken arbitrarily small for L large enough. Therefore we can estimate 
from above the second term in the r.h.s, of (3.15) by 

s u p P  s,,i,~>~ +P(N,/zl ,_>n)<~ F 2 - " e  "/2 (3.20) 
q t l  

where we used the Chebyshev inequality, (3.19), and the fact that the 
variable N,,/,_L~- is Poisson with mean n/2. 

We now choose the integer n as n = [e ~#*~#)+ I)L]. Then, if we combine 
(3.18) and (3.20), we get that (3.15) is bounded from above by 

[e(#~(#)+ l)L] e-~L + 2L 2e I - x + ylL + e( L ) <~ 3e(L) 

provided that L is large enough. II 
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4. PROOF OF THE L E M M A  OF SECTION 2 

Before starting with the proofs of the various lemmas, let us recall a 
rather standard result that will be used several times in what follows, 
whose proof based on cluster expansion or on the Peierls argument is 
omitted. 

Lemma 4.1. There exist f l0>0 and m > 0  such that for all fl>~flo, 
for all subsets V~ c V z c  VL with [0V, I ~<4L and for all events A in the 
a-algebra generated by the spins in V~ 

p ~ ( a ( x ) =  + l ) - p ~ ( a ( x ) =  + I ) ~ < C  ~ e .... aist,.,-.ov,, 
x E  VI 

]p ~,_( A ) - p + ( A ) I ~< r e  -m distl V' "Og'-~ 
(4.1) 

where/t  + denotes the infinite-volume plus phase. 

4.1. Proof  of Lemma 2.1 

In the sequel we will denote by 0* the set of bonds b parallel to the 
side 0j and such that they separate one site x e 0i from a site y ~ R. Then, 
given an open contour F e  ~ ( a ) ,  we will say that F starts in 0,. and ends 
in Oj, and we will write F: 0 i - ,  Oj if the first (last) bond e~ (e,,) of F either 
separates two sites in Oi (Oj) or e~EO* (e,,eO*). Let us now define the 
following four events: 

A~ - {a; 3Fe  ( ~ ( a )  with 6 F =  ~ and/F]  >~ 36L} 

A2 - {a; 3F: 03 --, Oj, j r 1 with A(F)  n R \ R  o 4: ~ }  

A2~.~ {a; IF :  03--I. 01 with d ( F ) n R \ M a , i ~ ( 2 ~  } 

A4 -- {a; 3/'." 03 --, 01 and F':  03 --, 01 } 

(4.2) 

where Ra = {xe  R; dist(x, 03)~< 3dL}. Then we have: 

I . e mma  4.2. Under the hypotheses of Lemma 2.1, 

sup p~(A1 ~J A2 u A3 w A4) ~ e(L) 
r 

Proof. By a standard Peierls argument 

sup l t~ (d ,  ) <~ e(L) (4.3) 
r 
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Let us estimate sup~/~(A2). We first observe that, given an open contour 
F: 03 --* 0j, j ~ 1, we have 

/x~(F) = e -2p Irl Z(R~., ( + ,  r))  Z(R r ,  ( - - ,  r))  
Z(R, ~) 

(4.4) 

where R/~ and R r denote the regions (not necessarily connected) in 
R\A(F) above and below F, respectively, and, without loss of generality, 
we have assumed that the boundary conditions on OextR[- c~ A(F) are + 1 
and - 1  on OextRrC~A(F). If we now set lr=dist(x*(F),O*), where 
x*(F) e6F belongs to e I eF ,  then, using the estimate 

Z(R, r) >>. Z(R r,  ( --, r)) Z(R~-, ( - ,  r)) (4.5) 

and the fact that we have open boundary conditions on 3extR ~ 0extAL, we 
get 

Z(R~-, ( +, r)) Z(R r, ( - ,  r)) 
Z(R, r) 

<~ e 2#1r (4.6) 

Thus we have the bound 

1": 03 ~ Oy F: 03 ~ Oj 
d ( F I ~ R \ R a r  AIF) nR\R4~I~J 

<~2 ~ e - ( 2 # - I ~  

O~I<~L 

(4.7) 

for fl large enough. Clearly, (4.7) shows that 

sup/~ ~(A2) -%< e(L) (4.8) 
T 

We now estimate sup~kt~(A3). As before, given an open contour 
F: O 3 ~ 01, let x*(F) ~ 6F be one of the endpoint of el e F. We distinguish 
between two cases: 

(a) Ix*(/')-L/2l <~6L. 
(b) Ix*(F)--L/21 >6L. 

In the first case we assume, without loss of generality, that x*(F) <~L/2. 
Then, using the same ideas as in (4.4)-(4.6), we get 

/~ (F )  ~exp[  - 2 f l  IFI + 2~x*(r) ]  <~ exp( -2f l  IFI +~L)  (4.9) 



684 Marcell i  and Mart inel l i  

We observe at this point that, since A(F)ca R \ M a r  the length IF[ is 
larger than �89 - 5 ) + 6 L .  Thus, using (4.9), we get 

Y iLk(r) <~e(L) 
1-'. 0 3 ~ OI 

Ix~l F )  - -  Z/ 2 l  <~ a L  
[ / ]  ~> ( L / 2  }( 1 --62;J + ,~L 

(4.10) 

In the second case we proceed exactly in the same way but we exploit the 
fact that IFI >>-�89 while min(x*(F),  L - x * ( l - ' ) ) <  L/2--SL,  which 
implies that the contour F prefers to end on 8,_u04 instead of ending 
on 01. 

It remains to estimate s u p ~ ( A 4 )  or better, using the above bound 
on sup~It~(A3), to prove that 

sup kt ~(A 4 n (A3)") ~< e(L) (4.11 ) 
,g 

This easy estimate follows immediately from the Peierls argument. 
Lemma 4.2 is proved. | 

Using the above lemma, we can conclude that 

s u p / t ~ ( ( S  + u S -  n CI+ ' - I  k3 C�91 c3 (el I u A 2 w A  3 uA4)  ) ~e(L) 

so that we need only to estimate 

sup lt~((S + u S -  w C +" -)  c~ C I -" +))" r~ (Al u A2 u A 3 u A4)") 
r 

We observe that, if the event (S + w S - )  ~ occurs, then there exist plus and 
minus chains ~] and cg 2, respectively, that connect 03 with the set R\R,~. 
In turn this implies the existence of a contour F ~  ff~(a) with 

zl(f')c~O3v~fg and A(F) n R \ R a : / : f g  

that is, 

(S + w S-)C ca(Aj u A2 u A 3 w A4)C ~ F n ( A I  u A 2 u  A3 w A4)" 

where F =  {a; 3! F ~ ( a ) ,  F: 0 3 ~ 0  ] with A ( F ) c M s } .  We are left with 
the estimate of 

s u p ~ ( ( C ~ + ' - ) n C ( - ' + ) ) " c ~ F C a ( A I w A z w A 3 w A 4 )  c) (4.12) 
r 
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Because of the event F, we know that there exists a unique vertical contour 
F: 03 ~ 01 in the strip Ma that, without loss of generality, we can assume 
to have plus spins on its left and minus spins on its right. Now, in order 
not to have the event C ~ + ' -  ~, there must exist either a minus chain ~gj or 
a plus chain cg 2 to the lft or to right of F, respectively, connecting 03 with 
the set RkRa. One easily checks that the presence of cg I to the left of F 
implies the existence of another contour F '  with length ]F'[ >/36L and 
analogously for %_. However, the presence of such a new contour is for- 
bidden by the event (A l t,_)AzwA3uA4)"; thus 

(C(+.-)  va C(-.+))C c~Fm(A, u A2u A3tJ A4)C= 

and Lemma 2.1 follows. | 

4.2. Proof  of  Lemma 2.2 

It is immediate to check, using DLR and (1.4), that the projection on 
a (7 + )  (2R,\R,_ of the measure/tRy( i I S is larger than the same projection but 

of the measure ~t~,(al). Thus we can estimate the quantity appearing in the 
statement by 

2 IFI~ Y', (Z4,(crl(x)-- +1 [S+)- / t+ t ( t r ] (x)  = +1)) (4.13) 
x ~ RI \R2 

Because of the definition of the event S + and because of (1.4), each term 
in the sum appearing in the r.h.s, of (4.13) can be estimated from above by 

i.t~,(al(x) = + 1) -p,~,(al(x) = + 1) (4.14) 

where Ri -- Rl\{x ~ RI; dist(x, 03) ~< 36L}. Lemma 4.1 now shows that 
(4.14) goes to zero exponentially fast in L uniformly in x. | 

4.3. Proof of Lemma 2.3 

Without loss of generality we assume that �89 1 + 6 ) =  2N6, where N >  1 
is an integer, and we define for i = 1 ..... 2 N 

S.;= {xe /~  l wRz" 0 < x l  ~<L; 

L(1-36)4 ~-(i-1)aL<~x'<L(1236)- + i J L }  

[ 1 iaL+~],i=l ..... 2 N - l ;  I , =  (i-- 1) J L + ~ ,  
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I2~= (2 'v-  1) gL + ~ ,  

i ~ l  

Notice that, by construction, {S~}~ ̂' is a partition of h I k . J R  2 into 2 N dis- 
joint horizontal strips of width 6L. Let now A be the event 

A = { ~r; 3 a plus .-chain :g c {x e R2; dist(x, 01) ~ 6L} 

connecting 02 with 84} 

Then 

_ ) - / ~ ,  ~R2( S ) 
+ , , ' r  - -q-  4.-,o" - - +  + ,o" ~,uR2 (S) -p~ , , . ,R~(S I A).u~,~R2(A) 

. <  + ,o -  ( A c \  + ,  - c "-:P~,~,R_,~-- , <~P~,~R:( A ) (4.15) 

+'~ ~,(S+ ] A ) ~> p ~,'~(S+ ). We will now estimate since, by monotonicity, p ~, ~ . 
from above p~(~n,(A"). Notice that, because of the ( + , - )  boundary 
conditions on the bottom and top sides o f / ~  L: R2, there exists an open 
contour F connecting the two lateral sides of R1 u R 2. In the sequel, given 
any such contour F, we will order its bonds e l, e2 ..... % starting from the 
left side 0, and we will denote by Xr the distance of el from 0, (as sets in 
E2) and by dr the largest vertical excursion of F above or below the 
horizontal line in B~ 2 containing the first bond et. Clearly x r  is a discrete 
random variable taking values 1/2, 3/2,... in the interval/.  Let now B be the 
event 

B_= {a; 3 a unique open contour F: a2 ~ 04} • {dr<~ 6L/2} 

The standard Peierls argument together with large-deviation estimates on 
F (see ref. 4 and Lemma A.1 in ref. 8) prove that, in the assumptions of the 
lemma, 

p+.- ,B,~<~e(L) RI ~ R2 ~ } 
(4.16) 

~+'~R_,(A" ] { xr  > 26L + �89 c~ B) <~ e(L) 

Therefore, by taking L large enough, it is enough to prove that 

p~, ~R,(Xr~ 2~L + ~ [ B) <~ cc~ (4.17) 

where c is a suitable numerical constant independent of ~ and L, provided 
that the latter is large enough (depending on 6). 
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+" - condi- In the sequel we denote by P,, the Gibbs measure lls~ . . . . .  s,.,, 
tioned to the event B and we let 

p,, - P,,(Xr <~ 26L + ~_) 

As a first step toward the proof of (4.17) we observe that, using the cluster 
expansion technique, for any open contour F: J02-~ 04 with dr  <~ 6L/2 one 
easily gets 14~ 

P , (F  is the open contour connecting 02 with 04) 

{[ ]} _ s, . . . . .  s2,, exp - 2 f l  I F I -  }-'. ~b(A) [1 +e(L) ]  (4.18) 
Z ~+ C . . .  ~ ,2 .  ,, ~ , ,  . . . . .  s.,,, 

A c~AIF) ~ ~5 

where the coefficients o~(A) are exponentially small in the diameter of A and 
invariant under vertical translations. Using (4.18) together with (4.16), it 
follows that (see, e.g., the proof of Lemma A.1 in ref. 8) 

P, , (Xr=X)  
sup ~< 1 +e(L)  (4.19) 

.,. ,.ei,_ . . . . .  1,_,,_~ P,,(Xr = Y) 

that is, the law of x r  under P,, is almost uniform outside the two intervals 
I~ and 12,. In particular, 

1 +e(L) 
sup P , , ( X r = X ) ~ ( 2 , , _ 2 ) b  L (4.20) 

.x- ~ 1 2  ~ . . .  12  n - I 

We now estimate PN by induction on n. We will show that 

1 l + e ( L ) + e ( L )  +e(L) 
p,, <<. p,,_ ~ ~ + 2  2 , ~  ~ Vn ~> 3 (4.21) 

which, for L large enough depending on 6, implies that 

pN~< ~ + 2 - - + e ( L ) 2 j  _ 2  +Ne(L)<<.cd 
j = 3  

for a suitable n umrical constant c independent of d and L. 
In order to establish (4.21), let A,, be the event 

A,7 = {3 a minus .-chain in Sz,,-~ + 1 connecting 02 with 04} 

Then we write 

p,,<<.P,,(xr~ll w I2 l A,7) P,,(A,-[)+ P, , (Xr6II  w I2 n (A,-i) c) (4.22) 
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Using the Peierls argument, one immediately shows that the second term 
in the r.h.s, of (4.22) is bounded from above by e(L). Monotonicity and the 
definition of p,,_ l imply that 

P,,( x r e  ll  w I2 I A,7) ~ P, , -  l( X r ~ I, w I2) -- p,,_ , 

so that the first term is bounded from above by p,,_ 1P,,(A,7). Let us now 
estimate P,,(A,7). We have 

2,,_, }) ( { 2. }) 
U Ii +P,,  A , S n  x r ~  U Ii 

i = l  i = 2 n - I  4 -3  

+ P, , (Xre 12.-1+ l k..) 12.-, +2) 

I 1 + e(L) 
~<=+e(L) + 2  z 2" -------~ u (4.23) 

where we used the symmetry between the lower and upper halves of the 
9 n -  I 

rectangle S~ u . . .  w $2,, to get P,,(Xre U,=, I,.) = 1/2, monotonicity, and the 
Peierls argument to get the e(L) term and (4.20) to get the last term. In 
conclusion, 

1 1 + e(L) 
P,,(A~-)<~ + 2  2 , - ~ + e ( L )  

2 --2 

and (4.21) follows. 
To prove the second part of the lemma, we first observe that, by FKG, 

4- ,or - - +  + ,  --  - -4-  pe,~R,_(S )>>'Pe,~R,(S ) 

and that the event o ~+ is contained in the event 

Bc~ 
2 N -  I t 

X r E U Ii 
i = 1 3 / 4 } 2 N +  I 

Thanks to the previous results [see (4.16), (4.17), and (4.19)] the pe,+'-~ R, 
probablity of this last event is greater than or equal to 

2 N 1 
[ 1 - e(L) ]( 1 - c6) 4(2N_ 2)[ 1 + e(L)] ~> 

for 6 small enough and L sufficiently large. II 
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4.4. Proof of Lemma 2.4 

As in the proof of Lemma 2.2, one can bound from above the quantity 
appearing in the statement of the lemma by 

2 ] f l u  ~ [dp~t(a,)[p~2"+(a,_(x)=+l) ~t'+ " - -I tn~ (a_,(.x)- + 1 ) ]  (4.24) 
x E R 2 \ R 3  

,t 

where/~2 - R2\{x c R_,; dist(x, 03) ~< ~L(1 - 6)}. Next we write 

1 4 G , ( ~ ,  ~ "  + " )It m (a_,(.x)= +1)  

<~l~:~R,(a(x) = + 1)  

+ 2  ~ [p~,(a(y)  = + 1)--pn+,,~n,(a(y) = + 1 ) ]  
. | 'E  Oext[/~2) t'~ R I  

<~p~,_,~R,(a(x) = + 1) +e(L) (4.25) 

and 

fdlt~,(a~)p~','+(az x)= +1)  (4.26) + l ) >~It~unl(a(x)= 

where we have used once more DLR, (1.4), and Lemma 4.1. 
The result now follows by plugging (4.25) and (4.26) into (4.24) and 

applying once more Lemma 4.1 in order to estimate 

- + X" p[~,,~R,(a(x)-- +l)-pR:~,n,(a(. ) +1 | 

4.5. Proof of Lernma 2.5 

r O" Let F(a2) - j  dps s g(~ Then we write 

If dlt~,,~n,(a2) F(a,_)- f d12nL(az l m >O) F(a2) 

<~ f dlt[~,,~m_(a,_) F(a2)- f dltAt(~2 l S;,) F(a,_) 

where 

R' = {x e R 2 (3 R3: dist(x, 01(Rs))/> ~L} 

S~, = { 3 a plus .-chain in R' connecting 02 with 04 
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We now observe that, as in the proof of Lemma 2.2, the projection on 
f + is smaller than the projection over the same set of the I-2:~L\R30 fln~un, 

measure pA,(a2 I S,~,). Thus we can bound from above the first term in the 
r.h.s, of (4.27) by 

2 Igl~ ~ [pA~(a(x)= + I  [Sn+,)--Zt,~,uR_,(a(X)= +1) ]  
x e I/'\R3 

~<2 I.fl~ ~ [/~L,,R:\R,(a(x)= + l ) - P , ~ , , , n , ( a ( x ) =  +1) ]  <~e(L) 
.,-~ v\m (4.28) 

where in the second inequality we used, as before, (1.4), Lemma4.1, and 
the fact that IF[ ~ ~< ]fl ~_. In order to estimate from above the second term 
in the r.h.s, of (4.27) we first need to recall the following basic fact about 
the measure pAL(a [ m > 0) (see ref. 9): 

pAL(3 a plus chain = Az.\A~ [ m > O) >1 1 - e(L ) (4.29) 

where A~={x~Az_ ;  dist(x, OAL)>~6L}. From (4.29) and the Peierls 
argument it easily follows that 

�91 + 1 [/.tAL(Sn, ) -- ~_1 <~ e(L) (4.30) 

By writing now 

f dpA,(a2 [ S~,) F(a2) 

dltAL(a2 I m > O) F(a2) ~ dltAL(a~_; m >0;  (S;.) c) F(a2) 

2/LA,(S;,-,) /~..(S~-,) 
Jd/2a,(o" z : m < 0; S~,) F(a2) 

-{ (4.31) 

and using (4.30), we immediately get that the second term in the r.h.s, of 
(4.27) is bounded from above by 3e(L). | 

4.6. Proof  of  Lemma 2.6 

Let us consider the following two subsets of 0ext(R4)~ AL: 

Ai = xSO~xt(R4) c~AL: x 2 ~ - ~ ( 1 - 7 ~ )  

A2= x~O~xt(R4)c~AL:-~(1 +86)~x,_<~L 
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and the associated local magnetizations 

E.,-~ ~, o (x )  

Then we get 

E.,- ~ ~., oCx) 

1421 

a C ~+'-I) fd~lRl( 1 [ fdl-lR3({~2[C(+'-))['~l~4((S:)C) 
~<p,~, (mA,~<(1-a ' ) lCl+ ' - ) )+p,~3(mA,_~<(1-3 ' )1C I+,-))  

.~, , I S + , I S +  + sup ~m~t mtt ,, )") (4.32) 
r 

m . l l ( C r  ) > ( 1 - -  6 ' }  

where 3' = 3/20. 
Notice that the third term in the r.h.s, of (4.32) is bounded from above 

by 

e4#,~'l IAd + IA21) tt [o.4((S + )c) (4.33)  

where 

r ( x ) = + l  V x e A  l w A  2 

r ( x ) =  --1 VxeOcxt(R4) ~ A L \ ( A I  wA2)  

Using the Peierls argument as in the proof of Lemma 2.1, it is easy to 
check that 

p~4((S, + )") ~< e(L) (4.34) 

Let us now estimate the first term in the r.h.s, of (4.32), the second one 
being identical. Using the definition of the event C ~+'-~ and (1.4), we 
immediately get that 

p ~ ( m  A, ~ (1-- f i ' )  l C( +'--)) ~p.~,(m A~ ~ (1- -6 ' )  ) 

where A'I = { x e A ~ ; x2 >1 (6'L/4)( 1 -- 76) }. Notice that the event 

21 IA',I/ 
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depends only on the spins a(x) with dist(x, OR!) >~ (&'L/4)( 1 -- 76). Thus we 
can apply Lemma 4.1 to get 

(4.36) 

where, in the last inequality, we have used Lemma 1 of ref. 9. 

4.7. Proof of Lemma 2.7 

Without loss of generality we can assume that L is odd. Let 

{ ~lr~right ---- X �9 O e x t R 2 ;  L , ( x [  ~ L ,  x.~ ~ -  - 

L ] L(3 - 6)J ~149176176 <---~,x2=[ ~ -} 
�9 extR2",-~<xl~L, x2 -- } 

and let, for any ~ � 9  (0, 1/2), A(~) be the intersection of the following four 
events: 

x ~ Oil en 

A'i(~) = {a; ~ a(x) ~< - L .,-. a~'~' ~-(1 -~)} 

A~(~176 ~ ~  } .,-~ ~ ~ -~ (1  - oQ 

A~(0~)={~; ~ ~(x)>_.L(l-oc)} 
x ~ 0~ igla 

Notice that if r �9 A(0Q, then 

++ <~ eSP~tuL.-v-((S+ + u S - - )  c) #R,_((S wS--)  c) 
where the boundary condition + ,  -T- means +1 on 01ff t, - 1  on 0~ ight, and 
conversely on 0 ter' ~r igh t  

3 , v 3  " 
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Thus we can estimate from above 

Id/,~,(o, I c '+ ' - ' ) I~ ,~(o21 c,-.+,) ,o,_,,~++ / R_,,,- w S - - ) " )  

by 

693 

I d/~,(a, I x (+'-~) I d/~%(~_~ I C-'+~)(~2~A(~)c) 

+ eSP:'Lp,~,_ ' :r ( (S+ + u S -  - )") (4.37) 

Let us now show that the first term in (4.37) is exponentially small in L 
provided that 6 and fl are, respectively, small and large enough depending 
on 0~. This in turn follows if we can prove, in the same range of the 
parameters, that 

o" l c /zR,((A,(~)) I C ~ + ' - ) ) < ~ e ( L )  

~,((A~(~))c I c ~+,-~) <~(L) 

/ ~ C( - .+ ) )  /lm((A 3(00) I <.%e(L) 

,, t " C I - ' + ) )  e (L )  [tR,((A3(o~)) [ <~ 

Let us consider only the first of the above inequalities, the others being 
similar. 

If we denote by m~ the (not normalized) magnetization 

m~ = ~ ~(x) 
x~Ol~l~n {.x ' ;~L ~< x I ~ < ( L / 2 ) ( I  - -  5di)} 

we have 

m a - 7 6 L  <~ • a ( x )  
NE0]] el't 

so that 

pRI((At(~)) ] ma~<~ -~/~R, ( 1 - 0 c +  7~) I C ( + ' - )  

Notice that {m~ .%< (L/2)( 1 --0c + 76)} is a decreasing event. Thus, using the 
definition of the event C (+" - )  and monotonicity (1.4), we have 

822/84/3-4-24 
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/t~, (ma <...L(1-<x + 70) l Cr (m,~-< L.,~-~ (1 -~x + 70))  

~</1 + mo...<~-(1-c~+70) +e(L)  

(4.38) 

where/~ + denotes the infinite volume plus phase. In the last inequality we 
have used Lemma 4.1 and the fact that 

L - 5 0 ) } ,  O,xpR1)>~OL dist (Ol~rt n {x; OL <-..xl <-..-~(l 

It remains to show that the r.h.s, of (4.38) is exponentially small in L for 
any ~, any 0 small enough, and any fl large enough, depending on e. This 
is actually the context of Lemma 1 of ref. 9. 

Let us now examine the second term in the r.h.s, of (4.37). We claim 
that, for fl large enough independent of 0 and 

].I ~,_" -T" ( ( S + + w S -  - ) c) ~ e - #~L/14) (4 .39)  

If we now take, e.g., ~ =  1/140, we get, using (4.39), that also the second 
term in the r.h.s, of (4.37) is exponentially small in L and the lemma 
follows. 

In order to prove (4.39) we first observe that, because of the boundary 
conditions +,  T-, there exist two open contours / ' l  and /'2 such that 

F~:O]--,Oi,; /'2:03-~0i2; il, i , � 9  {2,4} 

It is quite clear that for typical configuration the two contours / '1  and F2 
have length ~L/2 and end in opposite lateral sides. It is therefore natural 
to introduce the following events: 

and write 

{ { L }} Cl = a; A(F]) c x �9 R 2" dist(x, 0 I) ~ ~ ( 1 - 6) 

{ { }} C2 -- ~; A(/,2) c x �9 R2" dist(x, 03) ~ i-2 ( 1 - 6) 

C = C 1 (") C2 ("~ {o'; il r 

I.t~,'~((S++wS--)")<~lZf~,.':r((S++uS--)")lC)+It~,_':r(C c) (4.40) 
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In order to estimate the first term in (4.40) let us fix the two open contours 
F~ and F2 in such a way that the conditions specified by the event C1 n C2 
are satisfied and, without loss of generality, let us assume that i~ = 4  and 
i2 = 2. Then we write 

/~g'. ~ ( (  S +  + u S -  - )c I 1"1, 1"2) 

~<~g: ~( ( s  + + )"1 _r,, s 

~<~L.((s+ + )9 

<<,It[~,_ (3acontour F; IFl >~L (1-6))  

~< e - 2acL/131 (4.41) 

for fl large enough. In the above chain of inequalities we have used 
monotonicity (1.4) together with the hypothesis i~ = 4, i,_ = 2 to replace the 
measure I l+-'~(R2 "1 F~, F~)_ with the measure /z~,. and the standard Peierls 
argument to derive the final estimate. 

We are left with the estimate of/~ +'~ " ( C ) .  If we use estimate (4.9), we 
immediately get 

It,~. '-r- A(FI) (: xeR2 dist(x, O i ) ~ l z  

~< ~ e-2P Irl +~z, ~< e -  ~_p<t,/~3~ (4.42) 
F 

JF  I /> L/2 + {L/12)( I -- 5) 

and similarly for F2. It remains to estimate the probability that i I = i 2 .  One 
easily realizes that il =i2 implies the existence of another open contour 
F3:82--, 84. By proceeding as in the derivation of (4.9), we get 

+,-v- U i 2 )~2  
I-'1 : 11"11 >I L / 2  
r_,: IF21 > /L /2  

F3:IF31 >~L 

e-2p{Ird+lQl+lr31~+2pa ~e(L) (4.43) 

for fl large enough. 
If we combine (4.41) and (4.43), we get (4.39) for any fl large enough 

(independent of 6 and e). II 
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